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Why bother with data?

Models are interesting in themselves – why 
bother with data?
Adds legitimacy to the model

Concrete example of the models relevance

Gets the model looked at and used by other 
scientists
Citations!

<cynic>Applied journals produce a lot more paper 
volume... </cynic>



  

Modelling conversation

Distinguished Biologist
A. N. Other, Modeller



  

Modelling conversation

I've got this great model 
that predicts really cool 
stuff is going to happen!
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Talk Outline

Motivation
Model testing overview
Bayesian statistics overview

General approach
MCMC method

Example 1: ODE model of gut bacteria
Uses MCMC and stats methodology

Example 2: Ecological neutral model
True complex model with interesting predictions
Uses Bayesian approach to do hypothesis testing



  

Patterns in nature

Observe some interesting pattern in nature
From Physics, Biology, Chemistry, etc

Create a model
Reproduce the pattern
Is the model the real process?
Many processes produce the same pattern!



  

What causes the pattern?
Best way to find out is with idealised 
experimental system

Test model assumptions
Knock out experiments, etc

Can’t always do this!
Often can in traditional physics
Complex systems more difficult to study

Formal inference often needed
Mathematically interesting model is usually the 
limit of a more realistic & general model

Full model more suitable for testing



  

Classical tests of models

Formal hypothesis testing
Gives clearest results
Hard to do in practice
Hard to compare models

Information criterion (AIC, BIC)
Informal “heuristic” for model fit
Compare easily between related models
Can be difficult to interpret for unrelated models
Possible to “over fit” noise

Bayesian Model Selection
Hardest to perform



  

Information Criterion

AIC=2k−log P D∣M 

Akaike Information Criterion:

Bayesian Information Criterion:

where k=number of parameters, n=number of datapoints

P(D|M) is the probability of the data given the model (the likelihood).

Both penalise parameters against model fit, but weight 
all parameters equally (not fair on complex models)

BIC=k log n−log P D∣M 



  

Example of pattern matching

 Ecological neutral theory - all species are  
   “just as good”
Fixed N individuals equally likely to die or 
reproduce in a timestep
Mutations occur at rate p on reproduction, 
creating a new species
What is the distribution of species sizes – the 
“Species Abundance Distribution”?

Does it match with data?



  

Species Abundance 
Distribution

Is this evidence of 
neutral dynamics?
Competing models just 
as good AIC
Is this even useful 
evidence?

Neutral prediction

Statistical curve fit



  

Bayesian Parameter estimation

Posterior:

             is the Likelihood of the data given the 
model
        is the Prior probability of the model 
parameters
        is the probability of the data – requires 
integration over all model parameters

Usually have to evaluate           numerically

θ∣D=
PD∣θ Pθ 

P D

PD

Pθ 

PD∣θ

θ



  

(Insulting) Frequentist example 
of “Bayesian” Estimation

Have six dice labelled 1..6, dice x has x white faces and (6-x) black 
faces.  One dice is taken at random and rolled.  What is the 
probability the rolled dice was x given that the face observed is white?

Calculations:

Answer:

p  x∣white=
p white∣x  p  x 

p white

p  x=1/6

p white∣x =x /6

p white =∑
x=1

6

p white∣x  p  x =21/36

p  x∣white=x /21



  

MCMC (Markov Chain Monte 
Carlo)
Sample from the posterior probability distribution

Likelihood             of parameters given some data
Prior          : previous experiments
Metropolis-Hastings algorithm:

θ∝P D∣θ Pθ 

min 1,
π θ ' Q θ ' , θ 
π θ Qθ ,θ '  

Select new parameters

Where       is the proposal distribution.

Accept with probability

θ '~Q θθ ' 

θ '

Q

P D∣θ 

P θ 



  

MCMC (2)

Build up Posterior Distribution over many iterations N

Parameter 1
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Many 
iterations

Reject proposal: add    to the parameter set.
Accept: add    .

Obtain estimator          (can smooth)θ ~
∑
i=0

N

θ−θ i

N
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MCMC (3)

If proposal distribution Q is irreducible and aperiodic:
Guaranteed to obtain posterior as

 
But nothing said about finite N

Efficient (i.e. good at low N) if proposal distribution 
matches posterior distribution

And acceptance probability is not too low

N ∞

⇒ θ θ 



  

MCMC as a random walk in a 
potential

Random walk: probability of moving left q and 
right p with p+q=1:

MCMC: probability of moving left (Q symmetric):

MCMC in a potential:

q  x
p x−1

=exp−V x−1−V  x
T 

q  x =

min 1,
 x−1
 x  

min1,
x−1
x  min1,

x1
 x  

V  x 
T

=−log [ x [min1,
 x−1
 x  min1,

 x1
 x  ]]



  

Obtaining faster convergence

Methods include
Reparameterisation
Reduction or simplification of parameter space
Difficult in complex models

Annealing (“heating”)
Decrease temperature with time to find high probability regions
Only gets to equilibrium distribution, doesn’t explore it

Auxiliary variables
Augment parameter space to allow better mixing
Hard to apply in general case



  

Reparameterisation

Parameter p1
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Reparameterisation works if we can:
Detect
or Calculate

the shape of the posterior

This is difficult in complex models
In practice, parameter region is often of too high 
dimension
Why: random walk in D>3 doesn’t fill space!

Use of a “proper prior” guarantees convergence
But is sometimes an unwarranted assumption

Convergence problems

Parameter p1

P
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er
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2

Explored parameter region



  

Example 1 – gut bacteria

Differential equation model of gut bacteria 
growth
Several strains b

i
 competing for several 

“substrate” resources s
j

Interact via reaction products a
k 
(short chain fatty 

acids, or SCFA)
Flow of all materials through the gut (modelled 
as several compartments)
Detailed data from idealised experimental model 
available



  

General form of equations

Change of bacteria = Bacterial growth – bacterial outflow

Growth rate is non-linear in density of bacteria and resource

Substrates and SCFA behave similarly

d B1

dt
=B1∑

k

G B1, S k 1∑j

G B1,a j −k B1

G B1, x j =
g ij B1t  x j t

 x j t K i k 

Unsolvable non-linear model 
– equations not important!



  

Inference
Try to establish qualitative and quantitative 
behaviour
Not all parameters measurable
Some time series data is available
Likelihood for differential equation model?
Need a probabilistic model!
Use stochastic measurement process



  

Model behaviours

Competitive exclusion

Coexistence

Behaviour with single 
substrate:

NO CROSS FEEDING

CROSS FEEDING 

Time

B
ac

te
ria

Time

B
ac

te
ria



  

More model behaviours

Input driven extinction

Host competition exclusion

Time

B
ac

te
ria

Time

B
ac

te
ria

Time

B
ac

te
ria

Time

B
ac

te
ria

Periodic input

Host absorbs SCFA



  

Likelihood from differential 
equation models

Normal distribution

Observations

Predictions

Errors

Observations

Predictions

Errors

Bacteria A

Bacteria B

SCFA 1

SCFA 2

log LD∣M =∑
i

N  yi , y  xi , i



  

Data in the gut model

Multiple experiments Ei under different 
conditions

Each leads to inconclusive inference
Posterior of E1 is summarised, used as prior for E2, etc.  Some 

parameter estimates never improve.

Combined approach may be better?
No need to summarise
Hierarchical statistical model combines datasets

Dangers:
Larger state space – might increase degrees of freedom!
Model may be inconsistent between experiments?



  

Hierarchical statistical model

i2i1 iE...

i=〈i 〉

i

i2
'

i1
'

iE
'...

ij

Average parameter value

Variation between
 experiments

Known 
deviations

Experiment specific
Parameter values

Each parameter value 
hierarchically related 
to others

Allow for variation and 
predictable differences 
between experiments

Can in principle use full 
covariance matrix over 
all parameters

Can estimate     if 
enough experiments 
available

i



  

Example data

pH (low values are more acidic)

5.5

6.5

pH change

(SCFA 1)(SCFA 2)

Bacteria B Bacteria A
Bacteria C



  

Results – prediction

Bacteria A

Bacteria B

Bacteria C

SCFA 1

SCFA 2



  

Practical application

 MCMC inference with hierarchical model
Obtain full parameter distribution
Explains experimental results in terms if fundamental 

bacterial properties

Connect experiment and in-vivo behaviour
Extended colon
Periodic food intake

Can predict for different scenarios 
e.g. effect of antibiotics
Direct access to SCFA for health predictions

Care needed - model still too simple



  

Example 2: Ecological Spatial 
Pattern model
- Scottish Pine Trees
Relate mathematically interesting neutral model 

to real world
Neutral ecological model (i.e. no heritable 

differences)
Genetic differences observable through 

chemistry (monoterpenes)
Spatial data for monoterpenes – large 

heterogeneity observed
Theoretical models predict this – is the 

prediction quantitatively correct?
If not, monoterpenes are shown to be selected



  

Modelled 
Forest 
Area

Observed 
plots



  

Model ingredients

●Competition for space
●Sexual reproduction of trees
●Short-ranged seed dispersal
●Longer ranged pollen dispersal
●Pollen also arrives from outside modelled area
●Monoterpenes determined genetically
●Neutrality - parenting probability independent of 
monoterpenes



  

Inference in model

Define “sufficient likelihood”: set of descriptors 
that capture all features

Spatial clustering of trees
Spatial clustering of monoterpenes
Long ranged correlations in monoterpenes

Model too slow for MCMC
Sample parameters using latin-hypercube
Statistically model the likelihoods to obtain an 

approximation of the posterior distribution



  

Hypothesis test

Obtain likelihood model for the local clustering of 
trees and monoterpenes
This is hard – requires approximation by variogram models

Obtain a sample from this LOCAL posterior
Test whether the data falls within the 95% 
confidence interval of the sample for the large 
scale clustering



  

Point size 
proportional to 
LOCAL likelihood – 
point position 
random chosen by 
hypercube sampling

LOCAL
Likelihood 
surface 
estimated by 
statistical 
model of 
observed 
likelihoods

95% 
confidence
 interval



  

Hypothesis test

Observed in data

p(D)<1%

Formal test for neutrality in 
the data

Model parameters sampled 
from local effect posterior

Consider log likelihood gain 
from using site number as an 
explicit factor

Its significantly more 
important in real data than 
model

Therefore real data is not 
explained by a neutral model

Posterior
Prediction



  

Conclusions

Inference is possible for complex models
Bayesian formalism is the most appropriate
MCMC allows sampling from a likelihood, if we 
can write one down
Can formally test whether a model is incorrect
Lots of scope to mix statistics with complex 
systems problems!
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Conclusions

Inference is possible for complex models
Bayesian formalism is the most appropriate
MCMC allows sampling from a likelihood, if we 
can write one down
Can formally test whether a model is incorrect
Lots of scope to mix statistics with complex 
systems problems!
Thank you for listening!
Questions and discussion - might this work on 
any of your problems? Pre-prints available... just ask

Bristol has a complex systems group with heavy stats involvement...



  

Extra slides follow



  

Hypothesis testing

Consider P(D;C|M) < P
0

P
0
 is the threshold for the test, C is a condition to 
test on the data D

Requires careful formulation:
Probability of exactly the data is often infinitesimal
Consider probability of exceeding some threshold
Usually only possible for simple cases

Example: is a coin biased?
Observe 10 throws, 8 of which are heads

P h≥8∣p h=0.5=∑
x=8

10

 nx 0.5n
=0.054



  

MCMC for process models

More restrictive prior, or increasing data:
Reduces parameter region size
Reduces degrees of freedom in posterior
Reduces total variance 

# of effective degrees of freedom
(in max. likelihood distribution)

V
ar
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e 
in
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r

MCMC “practical”

MCMC 
“possible” MCMC “impossible”

3

Must manually identify 
undeterminable parameter 
combinations in this region

1

Very slow

Theoretically cannot converge

True 
variance

Sample
variance

0



  

Inferred parameter value

(1) Hierarchical model

(3) Non-hierarchical model

(2) Less data -Not measuring substrate output

Simulation study with multiple experiments:
Competition at (a) pH 5.5 & (b) 6.5
Bacteria A growth experiment at (c) pH 5.5 & (d) 6.5 
3 scenarios considered: only scenario (1) has converged MCMC chain!
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Monoterpenes are genetically controlled 
and heritable
Distributions can be well approximated 
by a weighted binomial distribution
L genes (values 0 or 1), each contributes differently 
to monoterpene count



  

Variogram models


